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Abstract—False alarm control performance of different constant 
false alarm rate (CFAR) algorithms is experimentally 
investigated using bistatic radar data. The CFARs under 
investigation include cell-averaging (CA-CFAR), smaller-of (SO-
CFAR), greater-of (GO-CFAR), ordered-statistic (OS-CFAR), 
censored cell-averaging (CCA-CFAR), and the homogeneity 
detector mean-to-mean ratio (MMR) test. The experimental 
data was collected using an Illuminator of Opportunity (IOO) 
bistatic radar that is under ongoing development at DSTO. For 
this set of experimental data, it is observed that CFAR 
algorithms that have a higher CFAR loss in a homogeneous 
environment will have a larger theory-experiment false alarm 
mismatch, especially at smaller false alarm rates and larger 
CFAR window sizes.  

I. INTRODUCTION  
A radar detection process involves testing whether the 

signal level in the resolution cell under test exceeds a 
detection threshold. To be useful in practice, a radar detector 
not only should be able to detect targets with high probability 
but also should simultaneously control the false alarm rate at a 
specified value. In modern radar systems, the false alarm rate 
is automatically maintained at a constant level by adaptively 
adjusting the detection threshold according to the background 
clutter and noise using a constant false alarm rate (CFAR) 
detector [1]. 

A wealth of CFAR detection algorithms have been 
proposed in the literature, for reference see [2]. In general, the 
signal level in the test cell (in which a decision on target 
presence or absence is to be made) is compared with an 
interference level estimate that is determined from the signal 
levels in a set of cells known as reference cells (which are in 
the vicinity of the test cell). Different CFAR algorithms have 
different methods of interference estimation. The majority of 
CFAR algorithms, however, rely on the assumption that the 
samples in the reference cells are statistically independent and 
identically distributed (i.i.d.).  

It should be noted that the i.i.d. assumption is not always 
valid in practice. The reason for this is two-fold: firstly, there 
are real radar scenarios in which there can be an abrupt change 

in the statistical property of the reference samples, for 
example, at the border between land and sea; and secondly, 
there is no guarantee that the probability density function (pdf) 
that characterizes the experimental data matches exactly with 
the theoretically assumed pdf.  

Therefore, it is important to assess how well different 
CFAR detectors comply with the theoretical false alarm 
control specification when they are applied to experimental 
data.  This is the aim of this paper for a small subset of bistatic 
radar data. 

The CFAR algorithms under investigation are [2]: cell-
averaging CFAR (CA-CFAR), smaller-of CFAR (SO-CFAR), 
greater-of CFAR (GO-CFAR), ordered-statistic CFAR (OS-
CFAR), censored cell-averaging CFAR (CCA-CFAR) and the 
recently proposed homogeneity detector mean-to-mean ratio 
(MMR) test [3-4]. This study is based on the assumption that 
all samples in the test cell and the reference cells are Rayleigh 
distributed. CA-CFAR is known to be optimal with i.i.d. 
Rayleigh interference, in the sense that the detector gives the 
highest detection probability for a given false alarm rate. SO-
CFAR is well-known for its detection performance against 
targets near a clutter edge, while GO-CFAR is capable of 
controlling the false alarm inflation right at that clutter edge. 
OS-CFAR is a unique CFAR detector that gives a detection 
threshold that is a linear scale of a sample in a single reference 
cell. These CFAR algorithms are ranked from low to high in 
terms of CFAR loss as follows [5]: CA, GO, CCA, OS, SO. 
Here CFAR loss is defined as the additional signal-to-noise 
ratio (SNR) a CFAR detector requires in order to achieve the 
same detection probability as compared to the other CFAR 
algorithms. Note that although the MMR test has the CFAR 
property, it is not designed to detect targets in the test cell, but 
to determine whether the samples in the CFAR window are 
statistically identical.  

The aforementioned CFAR algorithms have been applied 
to the experimental data collected from an Illuminator of 
Opportunity (IOO) bistatic radar that is under ongoing 
development at DSTO. The application of bistatic radar has a 
number of advantages over monostatic radar, especially when 
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IOO are employed for passive coherent location. For example, 
an IOO bistatic radar does not require a dedicated transmitter, 
which significantly reduces its implementation costs. Also, a 
targets’ bistatic radar cross section is different [6] to its 
monostatic RCS, which may assist in target detection and/or 
classification. 

The paper is organized as follows. A summary of the 
CFAR algorithms under consideration is given in Section II, 
followed by brief description of the IOO bistatic radar data in 
Section III. The theoretical and experimental results as well as 
the discussions are then given in Sections IV.  Conclusions 
and a discussion of future work are provided in Section V. 

II. DESCRIPTION OF CFAR ALGORITHMS 

A. Signal and Interference Model 
Consider a radar range-Doppler map as described by 

matrix A in Figure 1. Data in the same row of A represent 
samples in the same Doppler filter, whereas data in the same 
column of A are assumed time-coincident (i.e., representing 
samples at the same range gate). Assume that samples in the 
range-Doppler map are output of a squared-law detector and 
are statistically independent. Assume also that the amplitude 
of each sample can be described by the following exponential 
probability density function (pdf): 

0),/exp()/1()( ≥−= zzzpz λλ    (1) 
where: 
(i) λ=λN if the sample is thermal noise only where λN/2 is the 
thermal noise power;  
(ii) λ=λN(1+σ) if the sample contains a target return with an 
average SNR of σ;  
(iii) λ=λN(1+C) if the sample contains a clutter return with an 
average interference-to-noise ratio (INR) of C;  
It should be noted that Swerling I targets in a Rayleigh 
background are assumed [2]. In this paper, cases (ii) and (iii) 
shall be considered target-like. 
B. Detection Procedure 

Target CFAR detection is performed at each resolution cell 
in the range-Doppler map using a sliding window along each 
row of the matrix A as shown in Figure 1.  

 
Figure 1: Data in a range-Doppler map 

To test if a target is present at range gate x, also known as 
the test cell, a few immediate neighbouring range gates are 

used as a guard to avoid signal spillover from x. Data from 2N 
range gates outside the guard region: x1, x2,…, xN on the left 
and xN+1, xN+2, …, x2N  on the right (ie., N range gates on each 
side of x), are used to compute the detection threshold. The 
following two alternative hypothesises are to be verified: 

H0: the sample in the test cell is thermal noise only (case i), 
or 

H1: the sample in the test cell contains a target-like signal 
(cases ii & iii). 

This hypothesis verification is performed as follows: 
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i.e., hypothesis H1 is verified (target present) if the sample x in 
the test cell exceeds the detection threshold; otherwise (x ≤ 
Detection Threshold) hypothesis H0 is verified (target absent). 
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where T is a constant multiplier that is dependent on the 
required false alarm rate; x(1) ≤ x(2) ≤ … ≤ x(k) ≤… ≤ x(2N) are 
the ordered reference samples; and for OS- and CCA-CFAR, k 
defines the kth ranked sample employed in the interference 
estimation. 

The MMR test is performed as follows. For a given set of 
2N reference samples Ω ={x1, x2, …,  x2N}, let Ω1 ={ xn∈  Ω | 
xn>mean(Ω) }, Ω0 ={ xn∈  Ω | xn≤mean(Ω) }, μ1=mean(Ω1), 
and μ0=mean(Ω0), the MMR test is then: 

               T
H

H

≤
>

00

11

0

1

μ
μ           (4) 

where:  H00: all samples in  Ω are noise only, or 

 H11: at least one sample in Ω is target-like. 

III. THE EXPERIMENTAL BISTATIC RADAR DATA 
To experimentally investigate the false alarm control 
performance of the CFAR detectors under consideration, 
seven bistatic radar data files were employed. Each dataset is 
known to contain several targets of opportunity. The size of 
each data file is summarized in Table I. For instance, data file 
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Bistat_174b consists of 299 consecutive frames (range-
Doppler maps, equivalent to a Coherent Processing Interval 
(CPI)), each of which is a matrix of 835 range columns and 
128 Doppler rows as described by matrix A of Figure 1.  The 
datasets were collected using a custom receiver that was 
designed (primarily using Commercial Off the Shelf (COTS) 
components) and built by the Defence Science and 
Technology Organisation (DSTO) of Australia. The receiver, 
which belongs to the eXperimental Phased Array Radar 
(XPAR) project, digitises and extracts RF signals to a 
recording device for offline digital signal processing. The 
XPAR receiver RF chain down-converts the received signal 
from up to 16 independent elements to a 175MHz nominal 
Intermediate Frequency (IF). Each array element has a 
separate 14-bit Analogue-to-Digital converter (ADC) that 
allows the IF signal to be digitised at 100MS/s. The XPAR 
system then uses COTS chipsets to digitally down-convert 
the IF signal to baseband where the samples are stored on a 
large non-volatile disk in 32-bit complex values.  The XPAR 
receiver’s RF chain is displayed in Figure 2. 

 
Figure 2: The XPAR receiver RF chain 

The XPAR receiver was deployed near an airfield and with 
an unimpeded Line of Sight (LOS) look direction to Mt Lofty 
(location of Adelaide’s primary Terrestrial Digital Video 
Broadcast (DVB-T) transmitters). The receiver was deployed 
in a two-channel configuration: one channel dedicated to 
LOS signal reception, and the other used for target 
surveillance. Each channel used a directive Yagi-Uda 
antenna, and the surveillance antenna received the LOS signal 
through an antenna backlobe. This configuration permitted 
integration via 2D cross-correlation (c.f. Eqn 5) with a 
minimum of target energy in the LOS channel, and vice 
versa.  

 
 
               (5) 
 
 
 

where χ is the cross ambiguity value, τ is the delay, ν is the 
Doppler, rLOS is the LOS reference signal and rT is the 
surveillance channel signal. The targets were primarily 
detected in a “Transmitter over the shoulder of the Receiver” 
configuration as shown in Figure 3; principally because this 

was the sector that provided a target rich environment. An 
example range-Doppler map showing an airborne target is 
presented in Figure 4. 

 
Figure 3: Deployed radar configuration 

 
Figure 4: Range-Doppler map showing targets, clutter and 

ambiguities 
The corresponding CA-CFAR detection map (of a single CPI 
– false alarm rate of 10-6) is shown in Figure 5, and the 
collapsed time CFAR detection history of the full dataset is 
shown in Figure 6. It should be noted that the static clutter 
has been rejected in these figures due to its relatively uniform 
distribution along the zero Doppler line. 

Figure 5: Single CPI CA-CFAR detection of airborne target 
 

 
Figure 6: CA-CFAR of multiple CPIs 
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Figure 4, Figure 5 and Figure 6 illustrate the target detection 
performance of the CA-CFAR algorithm on a single dataset.  
Whilst a large amount of static clutter and a number of 
ambiguities (principally starting at approximately 85µs and 
200Hz) appear in Figure 4, the corresponding detection plot 
shows practically no clutter and a significant reduction in the 
presence of ambiguities (although one does still exist).  As is 
evident from Figure 6 though, the remaining ambiguity does 
not behave in a target-like manner as it appears static 
throughout time even though it has a Doppler offset.  In 
Figure 6 a number of slow moving targets are also apparent 
as well as the dominant “track” of the airborne target.  Whilst 
these figures visually demonstrate the performance of one of 
the CFAR algorithms being considered in this paper on a 
single dataset, they do not provide a clear analytical measure 
or an indication of performance across multiple CFAR 
thresholds or datasets.  These results will be presented in the 
following section. 

IV. RESULTS & DISCUSSIONS 
To plot the experimental false alarm curves, the most 

homogeneous regions without targets in those data files are 
selected. For each file, approximately between 1.3×107 to 
1.4×107 detection trials are performed using a CFAR detection 
window which slides along each range profile (i.e. along each 
row of the range-Doppler map A shown in Figure 1).  

TABLE I.  DESCRIPTION OF BISTATIC DATA FILES 

File name 
Size 

Frame Range Doppler 
Bistat_174a 300 835 128 
Bistat_174b 299 835 128 
Bistat_176a 300 1043 128 
Bistat_176b 299 1043 128 
Bistat_180a 300 1043 128 
Bistat_180b 299 1043 128 
Bistat_181 99 1668 128 
 

For theory-experiment comparison, the theoretically 
predicted false alarm curves are also plotted. Except the case 
of CCA-CFAR and MMR-CFAR the false alarm curves of 
which are obtained using Monte-Carlo method with random 
number generator and 107 trials at each data point, the 
theoretical false alarm curves of other CFARs are plotted 
using the closed-form formulas derived in [2]. 

The experimental false alarm rates for different CFAR 
detectors are shown in Figure 7 - Figure 12. For OS- and 
CCA-CFAR, k=1.5N was selected. 

Overall, it is found that CA-CFAR has an experimental 
false alarm control performance that agrees very well with 
what predicted in theory. For the seven experimental data 
files, file Bistat_181 gives the best theory-experiment match, 
while file Bistat_174b gives the worst theory-experiment 
deviation as shown in Figure 7.  

GO-CFAR also gives a very good theory-experiment 
match as shown in Figure 8 in which a similar false alarm 
match like that of the CA-CFAR is evident. The match is 

found over the whole false alarm range from 10-1 to 10-6 and 
over a wide spectrum of CFAR window size from 2N=8 to 40. 

For CCA-CFAR of Figure 9, the experimental false alarm 
curves follow the theoretical ones closely, but there is a 
noticeable deviation at lower false alarm values (for instance, 
below 10-4) and at higher CFAR window sizes (for instance, 
when 2N ≥ 24). 

OS-CFAR performs similarly to CCA-CFAR, although 
there is a more remarkable theory-experiment discrepancy at 
CFAR window size 2N=8 as shown in Figure 10. 

SO-CFAR has the worst theory-experiment false alarm 
mismatch as shown in Figure 11. The discrepancy remarkably 
increases when the CFAR window size 2N≥24. 

For MMR-CFAR of Figure 12, it is evident that the 
experimental false alarm curves do not match well with the 
theoretical ones. For instance, at false alarm rate of 10-5, the 
experiment-to-theory false alarm ratios are 2, 5, and 10 for 
CFAR windows 2N=12, 24, and 40, respectively. 

For this experimental bistatic data set, CA-CFAR gives the 
best theory-experiment false alarm agreement. It is observed 
that a CFAR algorithm that has a higher CFAR detection loss 
in a homogeneous environment will have larger theory-
experiment false alarm mismatches, especially at smaller false 
alarm rates and larger CFAR window sizes.  

The distribution of data file Bistat_174b is plotted on 
Weibull paper [7] as shown in Figure 13. The slope of the 
straight line is 1, which is a clear confirmation of Rayleigh 
distribution. The correlation of the same data is shown in 
Figure 14, from which a correlation of up to 6 range-delay 
samples is evident. Although not shown here, Rayleigh 
statistic is also observed in other 6 data files with the same 
correlation of up to 6 range-delay samples. 

The false alarm probability of SO-CFAR is now computed 
for file Bistat_174b using range-delay samples that are p=1, 2, 
and 5 samples apart. The results are shown in Figure 15. As p 
increases from 1 to 5, the theory-experiment mismatch 
becomes smaller. When p=5, an almost perfect match is 
obtained. The reason is that the range-delay samples are less 
correlated when they are further apart while the same 
Rayleigh distribution is still valid. Also shown in Figure 15 
are the false alarm curves of GO-CFAR which are 
approximately the same for p=1, 2, and 5. Although not shown 
in this paper, the same behaviour is also observed for the 
MMR-CFAR test.  

One explanation for the correlation of the data is a result of 
the waveform ambiguity function of the DVB-T signal.  The 
DVB-T signal is best described as having a thumbtack 
waveform ambiguity function; good resolution in range and 
Doppler but poor dynamic range performance due to the 
presence of a pedestal that extends in all range and Doppler 
around the central spike.  Given the high level of DPI and 
static clutter present in these datasets (as evidenced by Figure 
4), it means that targets are not actually being detected against 
thermal noise, but against the pedestal of the strongest signal.  
Interestingly enough, as these results show, the pedestal of the 
waveform ambiguity function behaves remarkably like 
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thermal noise for the majority of thresholds and CFAR 
algorithms considered. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, the false alarm control performance of six 

CFAR detectors is experimentally investigated using bistatic 
radar data; the statistics of which are correlated Gaussian. CA-
CFAR is found to have the best theory-experiment false alarm 
agreement. It is observed that for this set of experimental data, 
in general CFAR algorithms that have higher CFAR detection 
losses in a homogeneous environment will have larger theory-
experiment false alarm mismatches, especially at smaller false 
alarm rates and larger CFAR window sizes. 

Future research into the application of these CFAR 
algorithms to IOO bistatic radar data will include signal 
processing means of reducing the Direct Path Interference and 
static clutter’s pedestal signal levels down to the thermal noise 
or below in order to determine what impact this has on the 
algorithm’s performance. 
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Figure 7: False alarm control of CA-CFAR 
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Figure 8: False alarm control of GO-CFAR 
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Figure 9: False alarm control of CCA-CFAR 
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Figure 10: False alarm control of OS-CFAR 
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Figure 11: False alarm control of SO-CFAR 
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Figure 12: False alarm control of MMR test 
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Figure 13: Statistical distribution of file Bistat_174b 
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Figure 14: Range-delay correlation of file Bistat_174b 
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Figure 15: False alarm control of SO- and GO-CFAR 
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